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The effect of the steady second-order velocities on the drift forces and moments acting 
on marine structures in waves and a (small) current is considered. The second-order 
velocities are found to arise due to first-order evanescent modes and linear body 
responses. Their contributions to the horizontal drift forces and yaw moment, obtained 
by pressure integration at the body, and to the yaw drift moment, obtained by 
integrating the angular momentum flux in the far field, are expressed entirely in terms 
of the linear first-order solution. The second-order velocities may considerably increase 
the forward speed part of the mean yaw moment on realistic marine structures, with 
the most important contribution occurring where the wave spectrum often has its 
maximal value. The contribution to the horizontal forces obtained by pressure 
integration is, however, always found to be small. The horizontal drift forces obtained 
by the linear momentum flux in the far field are independent of the second-order 
velocities, provided that there is no velocity circulation in the fluid. 

1. Introduction 
One of the important problems in fluid dynamics is the interaction between water 

waves and floating or submerged bodies. Practical examples are represented by freely 
moving or moored ships and oil platforms. The linear wave forces, being proportional 
to the wave amplitudes, are usually responsible for the major part of the loading, but 
the steady drift forces, being quadratic in the wave amplitudes, can also be very 
important, giving rise to a drift of the body. There is also a similar steady second-order 
moment in the vertical direction, the steady yaw moment, which is responsible for an 
angular drift in the horizontal plane. 

The body often has a forward velocity which we shall here assume to be steady. 
Observed from the body, this forward velocity is equivalent to a uniform current in the 
opposite direction to the forward speed. Frequently, also a current is observed in the 
sea. In the North Sea, for instance, the current may be up to 1 ms-'. We shall assume 
that this current may be approximated as uniform (in space and time) whereby the 
effects of a forward velocity and a current become mathematically identical. 

One important reason for studying the forces on a floating body with a steady 
forward speed is the observed pseudo-steady resonant horizontal motions of moored 
oil platforms or ships due to nonlinear wave forces. It is reasonable that for sufficiently 
low-frequency and large-amplitude excursions this motion may be treated as steady in 
the analysis. Another approach to this problem is given recently by Newman (1993) 
who does a perturbation analysis where the low-frequency body oscillations are 
superposed on the diffraction field. 

The effect of a uniform current on the first-order forces and a drift force component 
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in the current direction has recently been studied by Grue & Palm (1985, 1986) in the 
two-dimensional case, and in the three-dimensional case by among others Zhao & 
Faltinsen (1989), Wu & Eatock-Taylor (1990) and Nossen, Grue & Palm (1991). It 
turns out that a current with speed U = 1 ms-l, changes the magnitude of the drift 
forces acting on large-volume bodies significantly, of the order of 50% compared to 
the forces for U = 0. The effect of a current can therefore not be neglected. A current 
complicates the mathematics considerably and makes the linear velocities in the fluid 
more difficult to find. 

There is, however, another effect of a current (or a forward speed) which has not, to 
our knowledge, been discussed in the literature. For U = 0, the drift forces and 
moments are completely determined by the linear solutions. This is not necessarily true 
when U + 0. We may then obtain contributions to the second-order forces and 
moments which are products of U and a steady second-order velocity. Assuming that 
the fluid motion is irrotational, the steady second-order velocity may be derived from 
a velocity potential, I)@). It is the intention in this paper to discuss these new terms. If 
U is moderate or large, it is complicated to evaluate $@). This is essential because in 
the neighbourhood of the body, the boundary conditions for $(') at the free surface 
become nonlinear. For many practical problems, however, U is small. Neglecting terms 
of O( Uz), the mathematical problem of finding $(') reduces to a linear boundary value 
problem. This is also the case when U is finite, but the body is slender (the 
Kelvin-Neumann problem). 

There are two ways of obtaining the steady second-order forces and moments. The 
first one is by direct pressure integration over the body, the near-field method. This 
method has the merit that the local values of the forces and moments are obtained, 
which may lead to a better physical insight into the problem. This procedure leads to 
contributions which are proportional to the derivatives of $('). It is, however, shown 
that for the horizontal drift forces and the yaw drift moment these contributions may 
be obtained without knowing the explicit solution for $@), assuming that U is small. 
This is not true for the vertical drift force and the two other moments which require 
for their evaluation the complete solution of the boundary value problem. 

The horizontal components of the drift force and the yaw moment may alternatively 
be obtained from, respectively, the linear and angular momentum fluxes in the far field. 
This way of proceeding has mathematical and numerical advantages, since the integrals 
are evaluated at a vertical control surface far away from the body. It turns also out that 
by this method the terms containing $@) vanish in the expression for the horizontal 
forces. The physical reason for this is that in the linear momentum flux the 
contributions at infinity from the pressure term and the velocity term cancel each 
other. This is not true for the forces and the moment obtained by the near-field method, 
a result which is obvious since the momentum flux due to the velocity term is identically 
zero integrated over a rigid body. 

For the yaw moment obtained by the far-field method we find, however, that $(') 

makes a contribution. Indeed, $(') may be as important as the terms from the products 
of the first-order quantities. The $('-"-contribution is in the examples presented here, 
practically speaking, always found to increase the effect of the current on the moment. 
Interestingly, we find for realistic marine structures that the most important 
contribution from $(') occurs for relatively long wavelengths where the wave spectrum 
very often has a maximum. 

The $(')-field is found to be generated by the presence of first-order evanescent 
modes in the vicinity of the body and linear body motions. In the special case with 
restrained bodies having vertical boundaries extending deeply into the fluid, for 
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example an array of vertical cylinders, the second-order velocities, V$(2), are found to 
vanish exactly. 

Formulae for the drift forces and moments are obtained in $2. Conservation of 
energy and mass are discussed in $3. In $4 we obtain far-field formulae for the drift 
force, yaw moment and energy flux for small values of the current speed, while $ 5  
contains a detailed discussion of the $(2)-contribution. Section 6 contains a discussion 
of results for finite values of the current speed while $7 is devoted to numerical results. 

2. The steady second-order forces and moments 
2.1. The near field 

We consider a floating body moving horizontally with constant speed U and 
responding to long-crested incoming regular waves with small amplitude. Let us 
introduce a frame of reference (x,y,z) moving with forward speed U, in the same 
direction as the body, with the (x,y)-plane in the undisturbed free surface, the x-axis 
in the direction of the forward motion, and the z-axis positive upwards. Unit vectors 
(i , j ,  k) are introduced respectively along the (x, y ,  z)-directions. It is assumed that the 
motion is irrotational and the fluid incompressible. The total fluid velocity may then 
be written 

v = V@+ WXJ. (1) 
Here xs is composed of the current potential, -x, and the steady velocity potential, x, 
generated by the moving body, independent of the incoming waves, i.e. 

@ is the velocity potential due to incoming, scattered and radiated waves. x and @ both 
satisfy the Laplace equation. The corresponding fluid pressure is given by the Bernoulli 
equation 

(3) 

xs = -x+x;  (2) 

p = - p  -++U2(IVxs(2- 1)+ w~s*v@++Iv@(2+gz +C(t), (E 1 
where C(t) is an arbitrary function of time. 

In this subsection we assume that the forces and the moments are obtained by 
pressure integration over the body (the near-field method). In the next subsection the 
same quantities will be examined using the far-field method. @ may be written 

where $(l) is the linear oscillatory potential proportional to the wave amplitude, and 
q5(2) and $r(2) are respectively the oscillatory and steady second-order potentials 
proportional to the wave amplitude squared. The terms +U21Vxs12, gz,  +IV@I2, a@/at 
and UVxs.V@ in (3) give rise to steady second-order contributions, being products of 
two qP-terms. The two latter terms also make contributions through products of @l)- 

terms and terms describing the first-order body motion. All these contributions are 
known when the complete first-order motions have been determined. The term 
-pUVxs.V@, however, also gives rise to a term 

@ = #(1) + p)  + 2 (4) 

Vxs- V$(2)n, dS, i = 1,2, . . . , 6 ,  ( 5 )  

where (nl, n,, n3) = n and (n4, n,, n,) = (x x n), with n being the normal vector, positive 
out of the fluid and x = (x, y ,  z). S,  denotes integration over the wetted part of the 
body in the mean position. Also the term iV2(Vxs(2 in (3) may give rise to a term similar 
to (5). We shall in this subsection neglect contributions of O(U2) ,  however. 

- - P U L B  

5-2 
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To evaluate ( 5 )  it seems necessary to compute the second-order velocity potential 
$(2). It is shown in $ 5  how this can be done for arbitrary bodies, provided U is small. 
We have to solve an integral equation and integrate over both the body and the free 
surface, which can be time consuming. However, the contributions from (5 )  to the 
horizontal force components and the yaw moment may, for small values of U be 
written in a proper form without solving for $r(2). In $ 5 we show that the integrals (5 )  
for these components may be replaced by integrals over the free surface and the body 
surface where +(2) enters in the form alC.(2)/an. For the horizontal forces it is found that 
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and for the yaw moment we obtain 

(7) 
Here Y denotes the steady velocity potential if the body is moving along the positive 
y-axis (corresponding to x when the body is moving along the positive x-axis). Y is the 
solution of the boundary value problem given in (63)-(66). S,  denotes integration over 
the free surface. 

The integrals (6) and (7) may be further rewritten by expressing a+(2)/an in terms of 
$ ( I )  and the first-order body motions. Since U appears as a prefactor in (6) and (7) it 
suffices to determine for U = 0. The free surface boundary condition for $(2) 

where a bar denotes time average. Introducing for the first-order potential 

where g denotes the frequency of encounter (see (34)), and noting that the two first 
terms on the right-hand side of (8) vanish, we obtain 

$(l) = Re(q5eiut), (9) 

Here an asterisk denotes complex conjugate. 
Correspondingly, a$(')/an on the body boundary may be expressed in terms of the 

first-order potential and the first-order body motions. Applying the results derived by 
Ogilvie (1983) for the complete second-order potential, we find 

where V:) is 

V z )  = - n - [(C'l) + a(') x x )  - V ]  V q P  + (at1) x n) - [d/dt(ctl' + a(1) x x )  - VqP]. (12) 
Here, C(l) = Re(((,, (,, (J eiut) and a(1) = Re((&, t5, &J eiVt) denote respectively the first- 
order translations and rotations of the body. 

Introducing (10)-(11) in (6)-(7) we see that yP) in the integral ( 5 )  is replaced by 
products of first-order quantiites. The free-surface integrals on the right-hand sides in 
(6) and (7) are easily evaluated numerically since x, Y, and a$@)/az decay rapidly away 
from the body. 
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For i = 3,4,5,  we obtain, instead of (6) and (7) formulae where $@) also enters. We 
have not been able to find $-(2) expressed by products of first-order quantities (like (10) 
and ( I l ) ,  (12) for a$(2)/an). We therefore believe that for these components it is 
necessary to solve the integral equation for $(’) and then compute (5 )  directly. 

2.2. The farjield 
An often used method to obtain the steady second-order forces and moments is to 
apply the principle of conservation of linear and angular momentum. Thereby the 
integration of the momentum may be replaced from the body surface to the restrained 
vertical cylinder at infinity. This procedure has the merit that the geometry is very 
simple and that the X-field defined by (2) vanishes. Furthermore, the Green function 
and the velocity potentials for the wave motion may be replaced by their asymptotic 
values. These simplifications make it possible to use analytical methods in the 
evaluation of the forces and moments. Let S ,  denote the surface of the vertical circular 
cylinder at infinity extending up to the free surface. The mean horizontal force may 
then be written 

where a bar denotes the time average and v, = 0.12. Correspondingly, using the 
principle of conservation of angular momentum, the yaw moment on the body is given 
by 

M ,  = 4.w. (14) 

In the Bernoulli equation (3), = 0, and for the second-order pressure C(t)  = O(A2), 
where A is the amplitude of the incoming waves. Furthermore, the coupling term 
~ U V X ~ . V $ ( ~ )  reduces to -pUi3$(2’/i3x. 

Let us first consider the horizontal forces given by (13). We notice that the last term 
in (13) gives rise to two terms containing U and qV2), namely 

Here the first term is zero due to conservation of mass, and the x-component of the last 
term cancels the contribution from the pressure term in (13). Hence, by the far-field 
method this component of the steady second-order force is completely determined by 
the first-order quantities, for all values of U. In the y-direction the coupling term gives 
rise to a force 

where s here denotes the arclength of a circle with a constant z-value. 

(3) in (1 3) and find 
To obtain the explicit form of the horizontal steady second-order force, we introduce 

F =  - J ( - p ( ~ t + ~ ~ V ’ ( l ) l ~ + g z ) . + p v ~ “ ) O  ” an ) d S - q  
3 ,  

+ p U i p + p U m .  (17) 
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The third term on the right-hand side of (17) vanishes since the mass is conserved. After 
some algebra F may be written 

where C, denotes the waterline of S ,  and Q1) the first-order free-surface elevation. 
Formula (18) is consistent with Maruo (1960), Zhao & Faltinsen (1990) and Kashiwagi 
(1991), except for the last term due to the second-order velocity, which is absent in their 
derivation. Obviously this term is zero if the velocity circulation in the fluid is zero. In 
some special cases, however, as for example a boat sailing at a non-zero angle of attack, 
it is expected that a steady velocity circulation is present, giving rise to the lifting force 
in (18). Then the effect of a possible trailing vortex sheet must be accounted for. 

For the steady second-order yaw moment we obtain, using that the contribution 
from the pressure field vanishes, 

where R is the radius of the cylinder, 0 the polar angle and e2) is the second-order free- 
surface elevation. The formula (19) is valid for arbitrary U and water depth. We notice 
that the two first terms on the right-hand side are products of first-order quantities. The 
last term will be neglected, being of O( U2) .  As shown in $5 the third term may for small 
values of U be recast into the form 

Here Ys is the steady velocity potential if the body is moving along the positive y-axis 
(corresponding to xs  when the body is moving along the positive x-axis). Analogous 
to (2) we write 

Using (10) and (1 l), M ,  is given by 
Ys= Y-y. (21) 

where V , )  is given by (12). Thus, M ,  is expressed entirely in terms of first-order 
quantities. 

For U = 0, (22) becomes identical to the expression derived by Newman (1967) for 
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zero forward speed. A formula for M, with non-zero forward velocity has recently been 
derived by Kashiwagi (1991). However, he does not consider the effect of the steady 
second-order velocity. 

3. Conservation of energy and mass 
The energy flux at infinity is given by 

W =  J (p++ppv2+pgz)v.ndS. 
s m  

Inserting for the pressure we obtain, to second order, 

We notice that the energy flux at S ,  is completely determined by first-order quantities, 
a result which was obtained earlier for the two-dimensional case by Grue & Palm 
(1 985). 

The mean flux of mass through the infinite cylinder is given by 

Since the motion is periodic in time, the mean mass transport through the cylinder, 
averaged over time, is zero. The first term on the right in (25) is the mass transport due 
to the Stokes’ drift. This is balanced by the mean second-order velocity and a term due 
to the second-order deflection of the free surface at infinity. 

Also, the integrated normal velocity of the free surface, averaged over time, is zero. 
Hence, to leading order 

(26) 
where nH = (nl, n2).  Since both ax/an and a@2)/an integrated over SF+ S ,  are zero, it 
follows from (25) and (26) that the last integral in (26) is equal to the Stokes’ drift at 
infinity, with opposite sign. This may also be seen by direct evaluation of the integral. 

Let us assume for the moment that U = 0. From (24) we then obtain 

where c and c, are the phase velocity and group velocity, respectively, and D is the 
Stokes’ drift (at infinity) 

From (25) it follows that for U = 0, D is also equal to 
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If the body is performing no work on the fluid over a period, W = 0. This is true for 
a body drifting freely in the waves or a body restrained from moving. It then follows 
from (27), (28), and (29) that the Stokes' drift (at infinity) and the mass flux due to the 
+(2)-field over the free surface are zero. The latter result will be used in $5. 

4. Formulae for the drift force, mean yaw moment and energy flux for 
small values of U 

The horizontal drift forces, obtained by the far-field analysis, are given by (18). For 
simplicity we assume that the velocity circulation is zero. Furthermore, using (35) and 
(36) below, it may be shown that 

Hence, for small values of U, we have 

For the mean yaw moment we have to leading order in U 

Let us introduce for the first-order potential defined in (9), with q5 being decomposed 
as 

(33) 

where A denotes the amplitude and w the frequency of the incoming wave (for U = 0); 
w is related to the wavenumber K by w2 = gK. The encounter frequency g and w are 
related by 

The incoming wave potential (6, is 

v = W -  UKCOSP (34) 

9, = exp[Kz--iK(xcos/3+ysinP)], (3 5) 
where P denotes the incidence angle. (6B represents the sum of the diffraction and 
radiation potentials and in the far field is given by 

(6B = R-%Z(8)exp[kl(6)(z-iR(1-472sin28)~)]+0(1/R) as R+ 00, (36) 

where 7 = ucT/g, (37) 
k, = v ( l +  27 Cos 6) + O ( T ~ ) ,  (38) 

v = g2/g = K( 1 - 27 cos P) + 0(7'), (39) 
and H(8) is the amplitude distribution of the potential. The formula for this is given 
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in Nossen et al. (1991, equation 64, 70,71). Introducing (9), (33), ( 3 9 ,  (36), averaging 
with respect to time, and applying the method of stationary phase, we obtain for & and 
5 

(cos 6 + 27 sin2 8)(H(6)I2 d6+ 2 cos p Re (S) + O(T~), (40) 

7 - -&{ Jo (sin 6-27 sin 6cos 6)1H(6)(2 d6+2 sin/?Re(S) + 0(?), (41) 
PgA 

I 
I 

2 6  F, 

6 -  2 x  

where s = (27~/~) te '" /~~*~g+27s inp) .  (42) 
As will be shown in $ 5  and the Appendix we obtain for the yaw moment 

where V2) is given by (12), S by (42) and S' by 

Here H' denotes a derivative with respect to the argument. 
For the energy flux we obtain from (24) 

(45) I W c T *  
- Ec, = --{l 2w ( 1 - 2 ~ ~ 0 ~ 6 ) l H ( 6 ) ( ~ d 6 + 2 ~ R e ( S )  K +O(T~) ,  

where E = $pgA2 and c, denote the mean energy density and the group velocity of the 
incoming wave, respectively. 

5. The steady second-order velocity potential 
5.1. General 

The steady second-order velocity enters in the equations only multiplied with U. To 
first order in U we therefore only need to consider +@) for U = 0. +@) is determined 
by 

V2+(2) = 0, (46) 

where we have used (lo), and VF) is given by (12). 

vanishes far away from the body since there 
In the general case we note that the free-surface boundary condition Im ($a2$*/i3z2) 

$(& Y ,  z )  = eKZ$(x, Y3 01, (50) 
where K is the wavenumber. This conclusion is, however, not true close to the body, 
except in the special case when the body is restrained and has vertical walls extending 
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deeply in the fluid. Then, a$(2)/az = 0 at S,  and = 0 at S,. In this case the 
steady second-order velocity is zero in the entire fluid region. An immediate conclusion 
is then that the +(2)-field is generated by the presence of first-order evanescent modes 
in the vicinity of the body and due to linear body motions. 

is obtained from (46)-(49) by using Green’s formula on $(’) and G = I / r +  l / r ,  
where r = I(x, y, z )  - (x’, y’, z’)l and r1 = I(x, y ,  z )  - (x’, y’, - z’)I. Here (x, y ,  z )  and 
(x’, y’, z’) denote the space and source coordinates, respectively. Utilizing that the 
integral of ($(2) aG/an - (a$(2)/an) G) over S ,  vanishes and that aG/an = 0 on S,, we 
obtain 
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where in (51) x is in the fluid domain and in (52) x is an element of S,. The latter is 
an integral equation for $(2), since a$(2)/an is known over S,  + S,. It is, however, not 
necessary to solve the integral equation to eliminate $(2) in the formulae for the 
horizontal forces and yaw moment, as pointed out in $2. Using the near-field method, 
it is sufficient to prove that formulae (6)-(7) hold. In the far-field method, the 
expressions for the forces do not contain whereas $(2) is eliminated in the formula 
for the yaw moment if (20) is valid. To prove (6)-(7) we use a variant of Stokes’ 
theorem, valid for bodies that are wall-sided at the waterline. From this theorem it 
follows that 

Vxs - V$(’)n, dS = - +(‘)mi dS- scB $(2) 2 ni ds, 
JS, JSB 

(53) 

where (ml, m2, m3) = - n . VVx, (m4, m5, m6) = - n 9 V(x x Vx,) and C, denotes the 
waterline of the body. We first note that for small values of U the free-surface condition 
for the steady potential can be approximated by 

axs/az = 0 at z = 0. (54) 

Hence the last term in (53) may be neglected. 

or 0 = x x Vx. Since 0 satisfies the Laplace equation, Green’s theorem gives 
To transform the first integral on the right-hand side of (53), we introduce 0 = Vx 

Since the integral over S ,  vanishes we obtain 

Introducing (56) in (53) and applying that aX/az = 0 at the free surface, we obtain for 
the horizontal force components 
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Thus we have demonstrated (6). For the vertical force we obtain 

which involves evaluation of y P  over the free surface. 
For the moment we have to add the term 

--pU/sB$(2)n.V(x x -i>dS = - p U  $(2)(n2k-n,j>dS. (59) 

We then obtain for the yaw moment 

(60) 
and for the horizontal moments 

To transfer the integral Ss,$(2)n2dS in (60) to an integral involving a@@)/an, we 
introduce the function Y defined by 

V 2 Y  = 0, (63) 

aY/an = n2 on S,, (64) 

W / a z  = 0 on S,, (65) 

VY +o, 1xJ-tCo. (66) 

Applying Green's theorem to $(2) and Y we obtain 

since the contribution from S, vanishes. Using that aY/an = 0 at S,, we obtain 

Introducing (68) in (60), the latter becomes identical to (7). We note that the formulae 
derived are very useful for the horizontal forces and yaw moment, but of no use for the 
vertical force and the horizontal moments since we do not know @@) explicitly for 
z = 0. 
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To derive the useful 
consider the identity 

5.2. The far-jield behaviour of $(') 

formula (20) for the yaw moment by the far-field method we 

where V denotes the fluid domain. By using Gauss' theorem for both integrals we 
obtain 

Since n, = O(A) on S,, the equation reduces to 

By partial integration, assuming that the velocity circulation is zero, 

Hence, using (68) 

where Ys = Y - y  (74) 
which is formula (20). 

(52). For large values of x, G and aG/an become 
This result may also be obtained from (51), without solving the integral equation 

2 1 
G = --2x' *V-+..., 

1x1 1x1 

- -2nI3-v-+ ... , aG 
an 1x1 

1 - _  

(75) 

where x;I = (x',y', 0) and nH = (nl, n,, 0). Inserting (75) and (76) into (51) we have for 
$@) far away from the body 

where 

and 

Thus 
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Using (68), -pUM,  becomes equal to the right-hand side of (73), and the formulae 
(73) and (80) become identical. We note that the first term of on the right of (77) is a 
sink with strength Q which equals the Stokes' drift, see (28) and (29), and is 
proportional to the net work performed by the body on the fluid, see (27). When the 
body is performing no work on the fluid we have that Q = 0. 

6. Comments on the second-order velocity for finite values of U 
The problem of finding $(') for arbitrary values of U is important, but complicated. 

This is essentially because the total xs-field is of order unity and the corresponding 
elevation of the free surface is finite. The problem is somewhat simplified if the body 
is assumed to be slender, but it is still necessary to make additional simplifications. One 
possibility is to use the Dawson approximation by which it is assumed that axs/az = 0 
at z = 0 for finite values of U also (see e.g. Nakos & Sclavounos 1990). Another 
possibility is to replace the problem by the Kelvin-Neumann problem where in xs the 
2-field is totally neglected so that xs  is replaced by -x. Both of these approximations 
contain inconsistencies. Using the latter, which is the simplest one, the boundary 
condition for $(') is by this approximation given by 

HereJTx, y )  is identical to the right-hand side of (8) when a/at is replaced by a/at' where 

a a  a 
at! at ax 

U - .  - = -- (83) 

In addition, satisfies the Laplace equation, a body boundary condition and a far- 
field condition. 

We shall not discuss here the solution of this boundary value problem, which may 
be obtained by using integral equation technique. We note, however, that (20) for the 
yaw moment computed by the far-field method is valid for all values of U. 
Furthermore, we note that the body boundary condition for $(') contains only 
products between (known) linear quantities. Hence, introducing in (20) a$(')/az given 
by (81) and (82), the term U'i32$(2)/ax2 gives rise to a third-order term in U. Thus, by 
neglecting this term we have a solution for the yaw moment, expressed by known first- 
order quantities, valid to O(U2) .  

7. Evaluation of the +(')-contribution for small values of U 
7.1. The far-jield method; the diflraction problem 

Attention is primarily focused here on the contribution due to $('). Since $(') does not 
contribute to the horizontal forces in the far-field method, only the mean yaw moment 
is considered. According to (19)-(21) the contribution due to @(2) is given by 
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FIGURE 1. The ship model. 
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FIGURE 2. Non-dimensional values of J, ( y -  !P)i3+@)/3zdS for the restrained ship (L  = 230 m) us. 
non-dimensional wavenumber KL: solidline, p = 90"; dashed line, /3 = 140"; dotted line, p = 160". 

It is assumed in this subsection that the marine structure is restrained from moving. 
According to the boundary condition (48) the integration over S,  in (84) then vanishes. 

As a numerical example we consider a ship with length L = 230 m and beam 
B = 41 m, see figure 1. The angle of incidence for the waves, defined as the angle 
between the forward speed direction and the wave direction, is 90", 140" and 160" (180" 
corresponds to head waves). 

For small forward speed the mean yaw moment may be expressed in the form 

M ,  = M,, + FrM,, + O(Fr2), ( 8 5 )  

where M,, denotes the moment for U = 0, Fr = U/(gL)i denotes the Froude number 
and FrM,, gives the change in the moment due to U. In figure 2 (84) is shown as a 
function of the non-dimensional wavenumber KL. We notice that the function has its 
maximum value for very long waves and for angle of incidence equal to 90". In figure 
3(u-c) the numerical results for the total value of M,, and for the value without the 
~-'2)-contribution are displayed as a function of KL. We notice that for shorter waves, 
K L  larger than 10, say, the contribution from $(2) vanishes whereas for very long waves 
the yP-field gives the dominating effect. Furthermore, for long waves the two 
contributions to Mzl,  one from $(2) and the other due to products of first-order 
quantities, are of opposite sign and therefore partly cancel each other. 

In this example, as well as in the examples discussed later with freely floating bodies, 
we find that the first term in (84) is the most important one, giving about three-quarters 
of the total contribution for the restrained ship, and about two thirds of the 
contribution for the freely floating ship. 

For sufficiently small values of KL, the @(2)-contribution to the yaw moment (84) 
may be evaluated approximately by analytical means. Intending to apply strip theory, 
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obtained by the far-field method: solid line, total contribution; dotted line, without the I,P- 
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0.2 

2 

we replace the wetted ship hull by a half circular cylinder of radius $B. Let q5, denote 
the velocity potential for the reflected wave; q5, then satisfies the boundary conditions 

(4 - 

where ac$,,/ay and aq5,/az are constants, and n, and n, are the y- and z-coordinates of 
the normal vector n. Comparing with (63)-(66), we may then write 

(88) 

where Z = Z(y, z) is a real function satisfying the two-dimensional Laplace equation, 
aZ/az = 0 on S ,  and aZ/an = n3 on S,. To leading order !P is given by 

q~ = $,+c$, = q5,(1+iKsin/3Y--KZ)+O(JK~)~), 

Y = - B2y/4r2, (89) 
where r2 = y2+z2. We then obtain 

KB2 . sin/3+O(1Kx12)) at z = 0. 
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Hence, from (47), we see that i3+-‘2)/az on S,  is antisymmetric with respect to y and 
decays as yP3 .  In figure 4 the values of Im(pp,*,)ly31 are shown as function of y / B ,  
obtained at the midsection of the ship, which is a rectangle form with draught 
T = 15 m and beam B = 41 m. The results for the ship are obtained by numerical 
computations. The angle of incidence is 90°, and K B  = 0.1833 or 0.5092. Note the very 
good agreement between the analytical and numerical results for KB = 0.1833 for y-  
values not very close to the hull. But for KB = 0.5092 also the analytical result gives 
a fair approximation to the numerical result. 

We may now evaluate the +-‘2)-contribution to the yaw moment by using the above 
analysis for the half circular cylinder. Using the strip theory approximation and 
assuming that the ship’s section is a half circular cylinder with beam being a function 
of the x-coordinate, B(x) = Bo( 1 - 12x/LI3) for 1x1 < iL, we find that 

By introducing the same beam to length ratio as for the ship, the right-hand side of (91) 
becomes 0.1787 sin ,4. Correspondingly, we find numerically for the ship that 

when KB 6 1, which again illustrates the close agreement between the analytical and 
the numerical methods. 

7.2. The far-jield method; non-restrained bodies 
It is expected that if the body is allowed to move, the +(2)-contribution to the yaw 
moment may be changed considerably. That change will be most drastic for bodies 
with vertical walls extending deeply in the fluid (see 55.1). The motion of the body 
makes the solution of the problem more time-consuming. This is true for the first-order 
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FIGURE 5. Non-dimensional values of Ss,(y- Yfj i3f2)/azdS for the non-restrained ship ( L  = 230 m) 
us. non-dimensional wavenumber KL: solid line, /3 = 90"; dashed line, /3 = 140"; dotted line, 
p = 160". 

problem; but the problem of obtaining I++(') when the first-order motion is known, is 
also changed. Now the problem is double-inhomogenous since the boundary conditions 
at the free surface as well as at the body are inhomogenous. In order to get an idea of 
the effect of a non-restrained body, the body is allowed to move freely to first order 
whereas we disregard its second-order motion. The boundary condition for $(2) at the 
body is then i3$(2)/i3n = 0. 

We have evaluated the $F'2)-contribution for the same ship as in the previous section. 
In figure 5 the sum of the two terms in (84) is shown as a function of KL for 90", 140" 
and 160". Comparing with figure 2 we observe that for restrained as well as for non- 
restrained structures the $(')-contribution is largest for waves with incidence angle 
equal to 90". However, the main, and more interesting, difference between the two 
figures is that the maximal ?+V2)-contributions are found for considerably larger values 
of KL (4 < KL c 8) in the non-restrained case than in the restrained case. This 
wavenumber interval corresponds to the wave period being larger than about 11 s and 
less than about 15 s, which is the interval where very often the wave spectrum has its 
maximal value. 

Figure 6(u-c) shows the numerical results for the total value of M,, and the value 
without the $@)-contribution, as a function of KL. Comparing figures 3 (a)  and 6 (a)  we 
notice that if the structure is allowed to move and the wave angle is 90", the maximum 
value of M,, is slightly increased. The main effect of the body being non-restrained is, 
however, that the yP-contribution becomes important for more moderate wave- 
lengths. When the wave angle is either 140" or 160" we observe that the maximum 
value of M,, for the non-restrained case is 3 4  times larger than the maximal values for 
the restrained case. The maximum values of M,, occur for moderate wavelengths for 
the non-restrained ship. 

It is of interest to compare M,, with the zero-speed moment M,, for the ship, which 
is shown in figure 7 for p = 140". By comparing figures 6(b) and 7 we observe that M,, 
is about 25 times larger than Mzo. Thus, for Fr M 0.02, which for L = 230 m 
corresponds to U = 1 ms-l, we find that the total moment is 50% larger than at zero 
speed. 
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FIGURE 6. Forward speed part, Mzl, of mean yaw moment for the non-restrained ship (L  = 230 m), 
obtained by the far-field method: solid line, total contribution; dotted line, without the g P ' -  
contribution. (a) /3 = 90", (b) /3 = 140°, (c) p = 160". 
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FIGURE 7. Mean yaw moment for the ship at zero forward speed, M,,, obtained by the far-field 
method. Wave angle /3 = 140". 
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7.3. The near-field method 
If pressure integration is used, the terms 

VXs-V$(2)n,dS, i =  1,2, ... 6 -~d,, 
in ( 5 )  appear. The $@)-contribution to the mean yaw moment is, according to (7), given 
by 

The first term is identical to the second term of (84). In the present examples this term 
is found to give the dominant contribution to (92), since the last term in all examples 
is about 25% of the first term. As noted above, the second term of (84) contributes 
approximately one third of the total contribution from (84) in the far-field case (non- 
restrained bodies). Thus, the magnitude of (92) is about one third of (84) in the present 
examples. Therefore, if the Ilr(2)-contribution is totally neglected, it is a better 
approximation to use the near-field method than the far-field method. 

The contribution from $@) to the horizontal forces by the near-field method is, 
according to (6), given by 

Like the last term in (92) this term is found to be non-zero, but small. We have 
performed several simulations, not reported here, for different body geometries freely 
oscillating in the incoming waves. Even when resonant body motions occur, and the 
contribution from the evanescent modes is significant, we find that (93) and the last 
term of (92) contribute at most 5 %  to the forward speed part of respectively the 
horizontal forces and yaw moment. The $(2)-contribution to the yaw moment, 
obtained either by the near- or far-field method is, however, not small and needs to be 
accounted for in practical applications. 

8. Summary and conclusion 
The effect of the steady second-order potential $(2) on the drift forces and moments 

experienced by a floating or submerged body in waves and a current is discussed. This 
contribution seems to have been neglected in the literature. The problem of evaluating 
$(2,0 becomes complicated for bodies of arbitrary form moving with a finite speed, since 
the vertical displacement of the free surface is finite. For small U the problem reduces 
to solving a linear integral equation. We show, however, that the $(2)-contributions to 
the horizontal drift forces by the near-field method, and to the yaw moment by the 
near-field and far-field method can be obtained without solving for @@). For the 
horizontal drift forces obtained by the far-field method it is found that @@) does not 
contribute, provided that there is no velocity circulation in the fluid. 

The $(2)-field, evaiuated for zero speed, is found to originate from first-order 
evanescent modes and linear body responses. $r(2) is therefore zero (or constant) when 
the body is restrained and has vertical walls extending deeply in the fluid. Numerical 
results show that the effect of $(2) is significant to the yaw drift moment. We find that 
the most important contribution occurs where the wave spectrum often has its maximal 
value. 
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The contribution to the horizontal forces from $('), which is identically zero using 
the far-field method, is found to be non-zero when the near-field method is applied. It 
seems however, after several simulations for different geometries, that this contribution 
is at most 5 % of the forward speed part of the forces. In practical applications the @z)- 
term may then be neglected when evaluating the horizontal forces by the near-field 
method. 

Financial support has been granted by the Royal Norwegian Council for Science 
and the Humanities (NAVF) and by the Joint Industry Project 'Wave Drift Damping'. 

Appendix. Contributions to the moment due to the first-order potential, 
for small U 

Contributions to the mean yaw moment due to the first-order potential are given by 

Introducing $(l) = Re($eibt) and averaging in time we obtain 

The potential $ is composed of $ = A(ig/u)($,+&), see (33), (35) and (36).  
To obtain contributions due to $B only we introduce 

where 

into the first term of (A 2). Carrying out the vertical integration we obtain 

ak,/aB = - 21.'~ sin 6 + O(r2), (A 4) 

(A 5 )  

(A 6 )  

We then introduce (A 5 )  into (A 2), and apply that 

= (- ik, - ;R-l) $B + O(R-%, R?, 7'). 

Noting that Re[$B a$E/aR] = O ( F )  we find that the contributions to the moment due 
to $B only, to leading order in r, become 
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To obtain contributions due to products between $,, and $B, the first term of (A 2) 
gives 

where in the first term we have applied partial integration in the &variable. By 
introducing 

:;#& = [( - ik ,z-k,  R-- i, L - i k l -  ak ' iH'ao] $B + O(R-P, R72, 72) (A 9) 2 a0 H 

into (A 8) and carrying out the vertical integration, neglecting terms O(R-', R T ~ ,  r2), we 
obtain 

R .  
2 Z, = r 1; {KR' sin 6'( 1 + cos (p- 0)) Re $32=0 +-sin Bcos (/3- 6') Re $3,=0 

(A 10) 
The second term of (A 2) becomes 

R 
2 = - 7 1; { KR2 sin 6' (% + cos (p- 6') Re +- sin 8 Re [@,, $3z=0} do, 

(A 11) 
and for the third term of (A 2) we have 

Z3 = 

2n 
= 7R I,, sin 6' Re d0 - 2rR 1; cos 6' Re [ i$, 21 do, (A 12) 

2-0 

where we have applied partial integration. The three contributions added up give then, 
omitting O(R-l, Rr2, r2),  

+ $1; sin 6'( 1 + cos (p- 8)) Re $:I,=, do. (A 13) 

Introducing (35) and (36),  and applying the method of stationary phase to the 
integrals, we obtain for the total moment due to the first-order velocities 

- Mz - - 1 
pgA2 

- ~ I m { ~ ~ ( l - 2 ~ c o s O ) H - d O  dH* d6' 
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